
BSc in CS ProgramHandbook
Date of Publication: August 2023



Foreword 3
The Mission of Woolf 3

Academic Program Information 4
Program Description 4

Admission Requirements 5
Curriculum Areas 5
Learning Outcomes 5

Faculty 6
Faculty Requirements 7
Faculty Advisors 7

Program Outline 8
Assessment and Grading 19

General Procedures 19
Cumulative Examination of Courses 20

Mode of Teaching and Assessment 20
The Online Campus 20

Structure of the Courses 20
Contact Hours 21

Pedagogical Procedures 22
Assessment 23

General Procedures 23
Cumulative Examination of courses 23
Grading Progress 23
Grading System 24

Curriculum 28
Android App Development 28

Course Description 28
Applied Computer Science 29

Course Description 29
Artificial Intelligence 29

Course Description 29
Back End Development 30

Course Description 30
Capstone Research Methods 30

Course Description 30
Challenge Studio 1 31

Course Description 31
Challenge Studio 2 31

Course Description 31
Collaborating for Impact 32

Course Description 32
Communicating for Success 32

Course Description 32

1



Computer Systems 33
Course Description 33

Data Structures and Algorithms 1 33
Course Description 33

Data Structures and Algorithms 2 34
Course Description 34

Designing Your Future 34
Course Description 34

Discrete Math 35
Course Description 35

Engineering for Development 35
Course Description 35

Ethics for Tech 36
Course Description 36

Front End Web Development 36
Course Description 36

Industry Experience 1 37
Course Description 37

Industry Experience 2 37
Course Description 37

Interaction Design 38
Course Description 38

Introduction to Data Science 38
Course Description 39

Introduction to Programming in Python 39
Course Description 39

iOS App Development 39
Course Description 40

Machine Learning 40
Course Description 40

Mathematical Thinking 41
Course Description 41

Network and Computer Security 41
Course Description 41

Optimizing Your Learning 42
Course Description 42

Product Management and Design 42
Course Description 42

Programming 1 43
Course Description 43

Programming 2 43
Course Description 43

Programming in Python 44
Course Description 44

2



Team Software Project 44
Course Description 44

Web Application Development 44
Course Description 45

Web Foundations 45
Course Description 45

Foreword
This manual has been designed to familiarize you with the policies and procedures

that shape the Woolf BSc in CS Program. This manual should not be viewed as complete
and is not designed to replace the Woolf Academic Handbook. It is intended to provide
information you will need in order to make decisions about your graduate studies and to
acquaint you with the administrative requirements, policies and procedures you will be
expected to meet that are outside the scope of the Woolf Academic Handbook. This
document should thus be used in tandem with the Woolf Academic handbook. Where either
manual seems incomplete, you are encouraged to inquire with your Faculty Advisor. For
questions beyond the domain of your Advisor you are encouraged to reach out to
help@woolf.university.

We hope that your experience within Woolf’s program will be fulfilling, stimulating,
and engaging. We are excited to welcome you to the Woolf community.

TheMission ofWoolf
Woolf exists to promote academic excellence, broaden access to higher education,

and guard values that are humane, democratic, and international. Above all, Woolf values
freedom of thought, freedom of inquiry, and freedom of expression.

We do this through our commitment to high-quality education and through widening
the horizon of opportunity by connecting students with quality academics across the world.

Through Woolf’s world-class platform and programs students gain exposure to new
ideas, new ways of understanding, and new ways of learning. By uniting exceptional faculty
with motivated students, Woolf is able to build an outstanding academic community leading
to journeys of intellectual transformation. From this we hope that students will share their
academic, intellectual and other talents in serving their communities across the world.

Woolf is guided by the following tenets:

Background. Talent may be evenly distributed but opportunity is not – we are working to
widen the horizon of opportunity by connecting students and teachers across the world.

Education.Woolf prioritizes an education that will serve its students both in the near-term
and in the long-term. Woolf seeks to provide a personalized, bespoke education. In all fields,
Woolf seeks to instill values of curiosity, intellectual discipline, and clarity of expression.

3



Research.Woolf prioritizes research-driven teaching that uses the latest academic
scholarship, and Woolf encourages its students to engage in groundbreaking research.

Society.Woolf encourages partnerships with governments, educational institutions,
research centers, schools, and businesses of all kinds – provided these partnerships do not
infringe on the values of Woolf.

Technology. To the extent that existing or new technologies can improve the educational
outcomes for students, widen access to the Woolf global network, improve the career
experience of academics, better secure credible governance, lower the costs of institutional
management, and generally support the mission of Woolf – these are embraced.

In all things, Woolf values excellence and measures itself against the highest international
standards. Woolf seeks to raise those standards further.

Academic Program Information
Program Description

The Bachelor of Science in Computer Science (BS in CS) is a 120-credit program
that includes a selection of online courses. The program is an integrated, sequential course
of study in which students obtain and demonstrate the knowledge and skills required of the
computer science industry.

The BSc in CS teaches students comprehensive and specialized subjects in
computer science; it develops skills in critical thinking and strategic planning for changing
and fast-paced environments, including technological and operational analysis; and it
develops competences in leadership, including autonomous decision-making, and
communication with team members, stakeholders, and other members of a business.

Courses include instruction targeting the areas above as well as and other relevant
learning goals, opportunities for repeated practice, and methods for students to demonstrate
their accomplishment of the outcomes.

The BSc in CS is delivered completely digitally by combining asynchronous
components (lecture videos, readings, and written assignments) and synchronous cohort
meetings attended by students and an instructor or faculty member during a video call.

The asynchronous components support the schedules of students from diverse
work-life situations, and synchronous meetings provide accountability, motivation, and a
sense of community presence for students. The synchronous sessions allow unparalleled
access to high quality instruction and enhanced collaboration among students through using
face-to-face online interaction.

Faculty conduct live office hours with students and interaction between faculty
members and students, both individually and as a group, is enhanced in the online
environment by blending asynchronous content with real-time student responses. Faculty
and enrolled students have 24/7/365 access to technical support through Woolf’s support
system.

Woolf’s digital campus allows students to complete the program in as little as 3 years
of continuous study or within 6 years as part of a part-time course of study. The degree on

4



the students’ transcripts is a Bachelor of Science in Computer Science, which attests to their
completion of the requirements.

Admission Requirements
The Woolf BSc in CS is a fast-paced, rigorous degree focused on teaching

comprehensive and specialized subjects in computer science. Candidates should have a
high school diploma (or equivalent).

English language competency at an IELTS 6 or equivalent is required of all
applicants.

The program is suited for undergraduate students considering a career in technology
or the innovation (start-up) economy. The overall programme is designed for those with little
or no background in computer programming and only basic mathematical knowledge is
required.

In all cases, the target group should be prepared to pursue substantial academic studies.

Curriculum Areas
The program is organized into a course structure of three tiered areas. Each tiered

area sequentially builds off of the previous, so students must complete each tier before
advancing to the next.

Each course consists of regular lessons and cumulative lessons devoted to
cumulative examination. Each course requires about 150 hours to complete (see individual
courses for details). A full-time student completes two lessons per week with an assignment
submitted for each lesson; this pattern continues for each regular lesson in the class.

Summative examination lessons allow an appropriate amount of time for students to
review and revise their prior work and deepen their synthetic grasp of the materials in
preparation for cumulative examination or project.

Learning Outcomes
﻿ The program teaches students comprehensive and specialized subjects in computer
science; it develops skills in critical thinking and strategic planning for changing and
fast-paced environments; and it develops competences in leadership, including autonomous
decision-making, and communication with employers, stakeholders, and other members of a
team.

Knowledge
● Students will grasp major concepts of computer science and web engineering, and

be able to classify specific computer science issues and engineering tasks as
instances of broader principles and generalizations.

● When completing assignments, students will demonstrate an understanding of
advanced general computer science concepts and will be able to use terminology
from the domain correctly, and they will rely on specific facts, including those at the
forefront of their field of study.

● Students will be able to contextualize factual knowledge of computer science issues
in view of relevant social and ethical issues.

5



● Students will display creative thinking on the basis of the knowledge they gain in the
course in response to concrete and abstract problems.

Skills
● Students demonstrate some application of theoretical and practical knowledge in

responding to problems.
● Students formulate their ideas in clearly structured conventional formats and use

appropriate evidence to support their claims.
● Students will monitor, evaluate, and adjust their own learning needs in order to

succeed as independent learners.
● Students will also collect and analyze data to respond to both well-defined practical

problems and well-specified abstract problems.

Competences
● Students will manage well-defined IT projects with a range of responsibilities that

require independent decision-making and handling of unpredictable situations.
● Students will gain professionalism, discipline, and creativity through managing

projects and collaborating with others.
● Students will develop the learning skills needed to continue to undertake further,

self-directed studies in computer science and programming with a high degree of
autonomy.

Faculty
All instruction is provided by competent academics with qualifications commensurate

to their role. All teachers are also expected to have relevant teaching experience in the
domain of their expertise. All faculty members at Woolf are expected to be in possession of a
research doctorate in the domain of their teaching or supervision; moreover, they are
expected to have a record of research or a research agenda reflecting the capacity for
research.

Woolf uses clear, fair, and transparent processes for teaching recruitment, conditions
of employment, and professional advancement. Notices of availability are publicly listed on
the Woolf platform and, when available, other sites visited by academics. Criteria for
teaching positions, including any associated conditions of ongoing employment, are clearly
stated. Applications for teaching are reviewed by the Administrative Board, or a committee of
the Board, until a position(s) is filled. Notices state the supporting documentation required as
evidence for the review of an applicant. All applicants are required to demonstrate their
competence for the teaching position by providing a copy of their credentials to be verified
before the position is filled. This policy applies to all teaching roles of Woolf Education Ltd,
including any teaching services provided by third party vendors, which are subject to the
same process of review. In all cases, the final decision for filling a role in accordance with the
criteria stated on the public notice is made by the Administrative Board.

Woolf’s policies and procedures apply consistently to full-time, part-time, ad hoc, and
third-party teaching activities. All teaching activities fall within the scope of Woolf policy.
Teaching staff, including part-time or ad hoc teaching staff are directed towards updates and
developments in their field as well as the methodological requirements for their programs.

6



All Faculty Members are encouraged to discuss innovative forms of teaching,
formulate how these may be implemented, and propose those implementations in the
Faculty Council. At the end of all courses, students provide feedback on their learning
experience, and twice per year faculty provide feedback by survey. All teachers are expected
to maintain a record of student outcomes, and teaching activities are periodically reviewed or
observed. In cases of disagreement, or suspected misconduct, fraud, or prejudice, a Red
Flag should be submitted under the Red Flag Procedure.

All courses and programs are subject to processes of quality enhancement to
improve student outcomes, including the course’s continued review to assess its scholastic
rigor and value.

Faculty Requirements
Academic Staff are called Faculty members at Woolf. Faculty members at Woolf

must possess a research doctorate and are expected to have a record of peer-reviewed
research. All teaching is under the authority and oversight of a faculty member – including
instructional design, synchronous meetings, and lectures. In cases where pre-recorded
lectures or podcasts are provided that contain content from outside of Woolf, any such
content is to be produced by lecturers who are experts with a research doctorate in the
relevant domain, or where relevant, by those with at least 7 years of industry-specific
experience.

Teaching Staff are called Expert Instructors, Domain Experts, or simply Instructors.
Expert instructors are used in courses to provide domain-specific industry insights, including
insights and feedback on student work during synchronous meeting sessions. Expert
instructors must have management experience and be in possession of at least a master’s
level qualification. Expert instructors are under the direct authority of the Faculty Members
and must be trained in Woolf’s pedagogical methods.

Faculty Advisors
Colleges at Woolf exist to support their members and provide helpful resources to

students.
In the tradition of Harvard’s “Houses” and Oxford’s “Colleges”, Woolf provides every

student with membership in a Woolf college for support during their academic journey. Every
student should be assigned a Faculty Advisor, who is a faculty member from within the
student’s own college, and who acts as the first point of contact for non-technical academic
issues related to the student’s progress, particularly where these may benefit from an
independent point of view. Students are strongly encouraged to meet with their advisors at
least once each semester.

Thus every faculty member oversees their own registered students through the
normal synchronous teaching sessions, and office hours, and additionally provides
availability that can be booked for advisees, should the need arise.

7



Program Outline

Outline of Program

Course Title Credits Course Description

1. Introduction to
Programming in
Python

1.5

This course is intended for students with little or
no programming experience. It aims to help

students develop an appreciation for
programming as a problem solving tool and to
provide a foundation in Python programming.
Students will learn how to think algorithmically,

solve problems efficiently, and prepare for further
computer science studies.

8



2. Optimize Your
Learning 1.5

During the course, students will develop
competence in skills that are most critical for
effective self-directed and self-regulated learning
(i.e. self-management, self-monitoring, and
self-modification), while also learning how to use
learning strategies to maximize their overall
learning efficiency and efficacy. They will also
utilize the Emotional Intelligence framework to
explore their identity, self-image, motivation, and
self-regulation skills, to support their development
as self-directed learners.

3. Web Foundations 1.5

This course provides a foundation in building for
the web. It helps students understand how the
internet works, examines the role of the internet in
their lives, and teaches them the basics of web
development. The course prepares students for
the advanced course in Web Application
Development.

4. Programming 1 3

The course helps students develop an
appreciation for programming as a
problem-solving tool. It teaches students how to
think algorithmically and solve problems
efficiently, and serves as the foundation for further
computer science studies.

9



5. Mathematical
Thinking

3

This course helps students develop the ability to
think logically and mathematically. It prepares
students for more advanced courses in algorithms
and discrete mathematics. An emphasis is placed
on the ability to reason logically, and effectively
communicate mathematical arguments.

6. Collaborating for
Impact 3

The course will start by focusing on the social
awareness and relationship management
components of Emotional intelligence, which were
briefly introduced in the pre-requisite course,
Optimizing Your Learning. Students will then be
introduced to a variety of collaboration and
leadership theories and frameworks, and they will
examine theories of team dynamics and
dysfunction, and reflect on how these relate to
their past experiences of collaboration in
academic and personal settings.

7. Communicating for
Success 3

Communicating for Success supports students in
developing communication skills that are
essential for success in their personal and
professional lives. The course will focus on close
reading, written communication, verbal
communication, and non-verbal communication
skills. An emphasis will be placed on weekly
submissions, and peer and instructor feedback, to
allow students to practice and improve their skills.

10



8. Programming 2 3
This course expands on Programming 1, and
deepens students' knowledge of Python with a
focus on data access and management.

9. Web Application
Development

3 This course builds on Web Foundations, and
provides a comprehensive introduction to client
and server-side development for the web.

10. Front End Web
Development

3

Front End Web Development builds on previous
knowledge of web development, and extends
students’ familiarity with modern HTML, CSS,
JavaScript, and Web APIs. Students learn to
develop and deploy client-side web applications
with greater scope and complexity. Complex
frontend features require using HTML, CSS, and
JavaScript together. Students will usually have
taken Web Application Development (or similar
course under advisement from their faculty) as a
prerequisite for this course.

11



11. Data Structures
and Algorithms 1 3

This course teaches the fundamentals of data
structures and introduces students to the
implementation and analysis of algorithms, a
critical and highly valued skill for professionals.

12. Product
Management and
Design

3

This course teaches students to build products
users want and love. It gives students a
foundation in the tools and practices of modern
product management and interaction design.
Students will work in pairs to apply product
development skills to real user challenges.

13. Team Software
Project 3

In this course, students practice the skills
necessary to work effectively on a professional
software product team. By working in small teams
to build a web application, they integrate the
technical, communication, and collaboration skills
built in previous courses.

12



14. Industry
Experience 1 6

Industry Experience is a form of experiential
learning that enables students to apply their
academic knowledge in a professional context.
Students work to build software that meets the
needs of a professional organization by
completing either (1) an approved internship, or
(2) a product studio.

15. Programming in
Python 3

This course is intended for students who have
completed Programming 1. It aims to help
students deepen their programming skills,
concentrating on Python. Students will learn how
to think algorithmically and solve problems
efficiently.

16. Engineering for
Development 3

Engineering for Development, Challenge Studio
1, and Challenge Studio 2 are courses that help
students investigate the role that technology can
play in solving some of the world’s most
intractable social and economic development
challenges.

13



17. Discrete Math 3

This course builds on Mathematical Thinking and
provides the mathematical foundation needed for
many fields of computer science, including data
science, machine learning, and software
engineering.

18. Computer
Systems 3

This course explores computing beyond software.
Students will go a level deeper to better
understand the hardware and see how computers
are built and programmed. It is modeled on the
popular, project based “Nand to Tetris” textbook,
which walks learners through building a computer
from scratch. It aims to help students become
better programmers by teaching the concepts
underlying all computer systems. The course
integrates many of the topics covered in other
computer science courses, including algorithms,
computer architecture, operating systems, and
software engineering.

19. Challenge Studio
1 3

Engineering for Development, Challenge Studio
1, and Challenge Studio 2 are 3 courses that help
students investigate the role that technology can
play in solving some of the world’s most
intractable social and economic development
challenges.

14



20. Data Structures
and Algorithms 2 3

This course builds on Data Structures &
Algorithms 1. Students will explore non-linear
data structures, and implement and analyze
advanced algorithms.

21. Introduction to
Data Science 3

Data science is applicable to a myriad of
professions, and analyzing large amounts of data
is a common application of computer science.
This course empowers students to analyze data,
and produce data-driven insights. It covers all
areas needed to solve problems involving data,
including preparation (collection and integration),
presentation (information visualization), analysis
(machine learning), and products (applications).

22. Challenge Studio
2 3

Engineering for Development, Challenge Studio
1, and Challenge Studio 2 are 3 courses that help
students investigate the role that technology can
play in solving some of the world’s most
intractable social and economic development
challenges.

15



23. Network and
Computer Security 3

Network and Computer Security teaches students
the principles and practices of security for
software, systems, and networks. It aims to make
students critical examiners and designers of
secure systems. Students will learn the
mathematical and theoretical underpinning of
security systems, as well as practical skills to help
them build, use, and manage secure systems.

24. Industry
Experience 2 6

Industry Experience 2 provides a form of
experiential learning that enables students to
apply their academic knowledge in a professional
context. Students work to build software that
meets the needs of a professional organization by
completing either (1) an approved internship, or
(2) a product studio.

25. Backend
Development 3

Back End Development builds on previous
knowledge of web development and security, and
equips students with knowledge of server-side
development so that they can become
professional back-end developers and build
enterprise-scale applications. Students learn to
develop and deploy server-side applications with
greater scope and complexity.

16



26. iOS App
Development 3

iOS App Development teaches students to build
modern mobile applications using Apple’s iOS
development platform and tool chain. It prepares
students to become professional iOS developers.
Students learn the core principles of the Swift
programming language and Apple’s front-end
frameworks for creating single and multi-page
applications.

27. Ethics for Tech 3

This course examines the ethical questions that
are emerging as a result of rapid technological
change. It prepares students to become
responsible technologists, and provides a basis
for ethical decision-making in their professional
work.

28. Android App
Development 3

Android App Development teaches students to
develop applications for Android, the most-used
mobile platform in the world. Students learn to
build with Android Studio and Kotlin, the modern
toolkit used for professional Android
development. The course prepares students to
become professional Android developers.

17



29. Artificial
Intelligence 3

Artificial Intelligence (AI) aims to teach students
the techniques for building computer systems that
exhibit intelligent behavior. AI is one of the most
consequential applications of computer science,
and is helping to solve complex real-world
problems, from self-driving cars to facial
recognition. This course will teach students the
theory and techniques of AI, so that they
understand how AI methods work under a variety
of conditions.

30. Machine Learning 3

This course aims to teach students the theoretical
and practical methods for solving problems using
machine learning. Machine learning is one of the
fastest-growing areas of computer science. Its
applications are reshaping society, from
consumer products (e.g., voice assistants and
recommendations) to life-sciences (e.g.,
personalized medicine and tumor detection). This
course will build on the Data Science introductory
course, and help students understand how, why
and when machine learning methods work.

31. Interaction Design 3

This course introduces students to the principles
of human-computer interaction (HCI). Students
explore how humans process information
(perception, memory, attention) in the context of
designing and evaluating interfaces. This course
complements programming coursework by
helping students understand how to design more
usable systems.

18



32. Designing Your
Future 1.5

Designing Your Future is inspired by the Stanford
University course Designing Your Life. In this
course, final year students will use design
thinking to reflect on their undergraduate studies,
and to plan and prepare for their transition into
full-time employment

33. Capstone 3

The Capstone Research Methods course
supports students in developing critical research
skills that are needed for the successful
completion of their capstone project (Applied
Computer Science).

34. Applied Computer
Science 7.5

This capstone course enables students to
demonstrate their proficiency in the technical and
human skills that they have acquired throughout
their undergraduate studies. The capstone
requires students to conceptualize, plan, and
implement a software project to completion, and
evaluate their project’s processes and outcomes.

Assessment and Grading
General Procedures

Academic assessment at Woolf is of two kinds: regular and cumulative. Regular
assessment applies to the continuous evaluation of student progress, concentrating on the

19



proficiency of submitted assignments, and the ability of the student to respond to issues
raised by the instructor during an instructional session. Cumulative assessment applies to
the final project assignment. This requires the students to deepen and extend the scholarly
engagements initiated in their prior work.

Students who fail any one course of the degree, cannot progress to complete the
degree, except by approval of the College Dean or College Academic Committee. Failed
courses may be retaken at the approval of the College Dean or College Academic
Committee, or by appeal, at the discretion of the Quality Assurance, Enhancement, and
Technology Alignment Committee (QAETAC). For more information about QAETAC please
see the Woolf Academic Handbook.

Cumulative Examination of Courses
Traditionally, cumulative examination of courses is by a submitted final project in the

form of a long assignment.
The long assignment is meant to synthesize, deepen, and extend the learning

outcomes of the regular lessons while introducing new material and insights. Not more than
50% of the long assignment may be material taken from other assignments. The topic of the
assignment must be agreed in advance with the instructor. Examination assignments are
expected to be completed at a high research standard, and must be well-structured,
well-crafted, and contain appropriate citations to the primary and secondary literature of the
course.

Mode of Teaching and Assessment
The Online Campus

Woolf University’s courses are offered almost exclusively through its proprietary
learning platform. The platform supports both asynchronous and synchronous modes of
learning. The asynchronous portion of programs includes structured course materials that
the course lead and course instructors prepare ahead of time. These courses are done
independently of students' classmates and according to the student’s own schedule, but
prior to the synchronous sessions. Synchronous sessions are held in the “virtual classroom,”
where students and faculty use internet technology such as video conferencing and web
cameras to ensure they are actively engaged in the learning process. It is essential for
students to connect with each other, share information, and create professional networks
and relationships as they would in a traditional program or within a professional setting. For
information about the technical specific requirements please see the Technical
Requirements section within the Woolf Academic Handbook.

Structure of the Courses
The bSc in CS combines asynchronous components (lecture videos, readings, and

written assignments) and synchronous meetings attended by students and an instructor or
faculty member during a video call.

Asynchronous components support the schedules of students from diverse work-life
situations, and synchronous meetings provide accountability and motivation for students.

20



Each short foundation course, and the extended specialist courses, consists of
regular lessons and cumulative lessons devoted to summative examination.

As is typical for synchronous teaching, the student will compose one assignment
(such as a report, 1,000 word essay, financial model, or presentation) per lesson, which is
the topic of meeting discussion. A full-time student completes two lessons per week with an
assignment submitted for each lesson; this pattern continues for each regular lesson in the
course.

Summative examination lessons allow an appropriate amount of time for the student
to review and revise his or her prior work and deepen their synthetic grasp of the materials in
preparation for cumulative examination or project.

Contact Hours
For the breakdown of hours, consult the Pedagogical Procedures and Assessment

sections.
Students engage in 8 synchronous meeting sessions in which questions and

answers about asynchronous study materials are addressed.
Synchronous meeting engagements include not only 60-75 minutes of intensive

contact time between the students and faculty member in every lesson (up to twice per
week), but also extends beyond the synchronous meeting session itself to include ongoing
supervisory support on an ad hoc basis (typically by email or brief virtual meeting). Students
are closely supervised by asynchronous direction, oversight, feedback, and guidance; and
occasionally new handouts or other scholarly materials are provided to follow up on issues
raised in a synchronous meeting discussion. Thus, on our calculation, we allocate four
further hours of contact time beyond the synchronous session to capture the individual,
personalized, intensive, bespoke form of guidance that a student receives. We calculate all
other forms of contact time at a 1:1 ratio, including lectures, whether delivered
synchronously or as pre-recorded videos or podcasts.

Example regular lesson Breakdown
* = contact hours = 66
† = assessment hours = 1.25

Hours Activity

1.25*† synchronous session

4* Time under the direction and control of a tutor

1.5* Lecture videos or podcasts

8.25 Independent reading & note-taking

7.5 Assignment composition

22.5 Total

21



Pedagogical Procedures

The MSc in CS will be delivered using online and blended learning techniques, which
support a variety of teaching and learning methods, including the following:

● synchronous meetings;
● assigned lectures by video or podcast;
● assigned readings;
● handouts delivered electronically;
● digital material, including slideshow presentations and other assigned media provided

in course packets and by weblink.

The core pedagogical method used in this course will include synchronous meetings
between a faculty member, or a subject expert instructor under the oversight of a faculty
member, and a small group of students. Student interaction plays a key role in the
organization of each synchronous meeting, which focuses on a discussion of a student’s
pre-submitted assignment.

Online delivery, although identical in content for an in-person session, provides
significant advantages to students in terms of accessibility – students can more easily reach
academic experts across borders and more easily integrate study within the pattern of their
own life or career. Further advantages of the online delivery include the digital quality
assurance techniques outlined within the Academic Handbook.

Preparing for a single synchronous meeting requires about 21.25 hours. A
representative workload consists of the following: students must review about 100 pages of
reading material (or equivalent video content, audio content, or interactive content) and
prepare a piece of written work of 2-4 pages in response to a specific set assignment
question. Before the start of the synchronous session, this work is submitted to the instructor
for review.

Every student must then be prepared to discuss and defend his or her written work
directly with the instructor (who is an expert in the field) and the other students for up to 75
continuous minutes. Faculty members and subject experts seek to deepen the students’
understanding of the material and probe aspects of the written assignment that may benefit
from clarification, revision, or further exploration.

At the end of the synchronous session, the instructor provides the student with
feedback on the meeting assignment, including a mark, and provides bespoke guidance for
the next assignment. Students are provided with a curated reading list from the instructors,
assigned pre-recorded lectures, and a research question to guide the organization of their
next synchronous meeting assignment or assignment. Engaging in this activity twice per
week is a full workload of about 45 hours.

The synchronous meeting system is designed to be mentally demanding and
personally engaging. The pedagogical style is known for producing high-quality
domain-specific learning outcomes because students must learn assigned materials and
related case studies for themselves, before presenting their work to an instructor in their own
words for discussion twice per week. By requiring students to describe and analyze topics in

22



their own words, synchronous meetings engage and extend a student’s existing range of
abilities.

The synchronous method is also known for producing high-quality domain-agnostic
learning outcomes because students must be prepared to organize and present their
perspective on an assignment twice per week, and be prepared to think analytically and
creatively about what they have done. Students must learn to present their viewpoint, even
while being prepared to adopt a new position in light of the evidence and under the
questioning of the teacher.

Assessment
General Procedures

For the MSc in CS, assessment is of two kinds: regular assessment and summative
assessment.

Regular assessment applies to the continuous evaluation of student progress,
concentrating on the proficiency of submitted assignments, and the ability of the student to
respond to issues raised by the instructor during a synchronous meeting session.

Cumulative assessment applies to the final project assignment. This requires the
students to deepen and extend the scholarly engagements initiated in their prior work.

Students who fail any one course of the degree, cannot progress to complete the
degree, and will by default fail the BSc in CS. Failed courses may be re-taken at the
discretion of Woolf’s Faculty Members.

Cumulative Examination of courses
For each course, a percentage of the grade derives from the average of the regular

assignments, and a larger percentage of the grade derives from the cumulative examination.
The cumulative examination of courses is by a submitted final project in the form of a long
assignment.

The cumulative examination/long assignment is by summative assignment (3,000
word essay, or similarly-sized financial model, or presentation), which must synthesize,
deepen, and extend the learning outcomes of the regular units while introducing new
material and insights. Not more than 50% of the long assignment may be material taken
from synchronous meeting assignments. The topic of the assignment must be agreed in
advance with the faculty member and subject matter experts. Examination assignments are
expected to be completed at a high research standard, and must be well-structured,
well-crafted, and contain appropriate citations to the primary and secondary literature of the
course.

Grading Progress
Students receive grades and feedback on each assignment throughout a course.

Depending on the specific course, students may receive both a grade and a written or audio
comment from an instructor. Courses display the weight assigned to each grade-bearing
category (such as regular assignments, attendance, and/or final projects). Students have
access to their grade book at all times and can see a record of all grades, attendance
records, and assignment submissions.

The grade book displays the current running average for the grades in the course in
accordance to the grade weights, inclusive of all those assignments which the student has
submitted and on which the instructor has provided grades. At the end of the course, grades

23



are finalized and added to the student’s transcript, which is accessible at all times for
students enrolled in credit-bearing programs.

Grading System
The final grade for a course is determined by the weighting rules stated in the course

offering. Unless otherwise stated, all courses are weighted as follows: 50% of the grade
derives from the average of the instructional assignment session, and 50% of the grade
derives from the cumulative examination.

The final grade on a degree is weighted in proportion to the credits of individual
courses. For example, a degree composed of a 3 credit course and a 6 credit course will
weigh the 6 credit courses proportionately more, according to the number of credits.

Woolf’s International Grade Classification
Woolf’s teachers are trained in a number of different grading scales; these scales are

cross-referenced. This handbook employs the American grading system and classification,
with US grades as the default.1 US grades are the most granular and distributed with the
least number of gaps, which is why we have selected them as a default marking scheme for
transcripts. Woolf’s international conversion scheme is as follows:

US
GPA

US
Grade

US
Per Cent

UK
Mark

UK
Classification

Malta
Grade

Malta
Mark

Malta
Classification

4 A+ 97 - 100 70+ First class honors A 80-100% First class honors

3.8-4.0 A 94-96 67-69 Upper-second class
honors B 70-79%

Upper-second
class honors

3.7 A- 90-93
65-67

Upper-second class
honors

3.3 B+ 87-89 60-64 Lower-second class
honors C 55-69%

Lower-second
class honors

3 B 84-86

2.7 B- 80-83 55-59 Lower-second class
honors

2.3 C+ 77-79 50-54 Third class honors D 50-54% Third-class honors

2 C 74–76

1.7 C- 70–73 45-49 Third class honors

1.3 D+ 67–69 40-44 Ordinary/Unclassified

1 D 64–66 35-39 Ordinary/Unclassified

0.7 D- 60–63

0 F
Below 60

Below
35 F 45-54%

1Cf. the Fulbright Commission
(http://www.fulbright.org.uk/going-to-the-usa/pre-departure/academics), Princeton Review
(https://www.princetonreview.com/college-advice/gpa-college-admissions), European Commission
(https://eacea.ec.europa.eu/national-policies/eurydice/content/second-cycle-programmes-49_en), and
University ofMalta
(https://www.um.edu.mt/__data/assets/pdf_file/0005/47390/harmonisedregs-09.pdf).

24



Woolf Grading Criteria, Definition of Grades, and Classification
Grading of student work keeps in view the scale of work that the student can

reasonably be expected to have undertaken in order to complete the task. The Woolf
grading scheme draws heavily from the marking scheme set out by the University of Oxford
(cf. History Faculty Course Handbook 2016-2018).

a. The assessment of work for the course is defined according to the following rubric
of general criteria:

i. i. Engagement:
● Directness of engagement with the question or task
● Range of issues addressed or problems solved
● Depth, complexity, and sophistication of comprehension of issues and implications of

the question or task
● Effective and appropriate use of imagination and intellectual curiosity

ii. Argument or solution:
● Coherence, mastery, control, and independence of work
● Conceptual and analytical precision
● Flexibility, e.g. discussion of a variety of views, ability to navigate through challenges

in creative ways

iii. Evidence (as relevant):
● Depth, precision, detail, range and relevance of evidence cited
● Accuracy of facts
● Knowledge of first principles and demonstrated ability reason from them
● Understanding of theoretical principles and/or historical debate
● Critical engagement with primary and/or secondary sources

iv. Organization and presentation:
● Clarity and coherence of structure
● Clarity and fluency of writing, code, prose, or presentation (as relevant)
● Correctness of conformity to conventions (code, grammar, spelling, punctuation or

similar relevant conventions)

b. US grades for courses are defined according to the following rubric:
97-100

Work will be so outstanding that it could not be better within the scope of the
assignment. These grades will be used for work that shows exceptional excellence in the
relevant domain; including (as relevant to the domain): remarkable sophistication and
mastery, originality or creativity, persuasive and well-grounded new ideas or methods, or
making unexpected connections or solutions to problems.

94-96
Work will excel against each of the General Criteria. In at least one area, the work will

be merely highly competent.

25



90-93
Work will excel in more than one area, and be at least highly competent in other

respects. It must be excellent and contain: a combination of sophisticated engagement with
the issues; analytical precision and independence of solution; go beyond paraphrasing or
boilerplate code techniques; demonstrating quality of awareness and analysis of both first
principles or primary evidence and scholarly debate or practical tradeoffs; and clarity and
coherence of presentation. Truly outstanding work measured against some of these criteria
may compensate for mere high competence against others.

87-89
Work will be at least very highly competent across the board, and excel in at least

one group of the General Criteria. Relative weaknesses in some areas may be compensated
by conspicuous strengths in others.

84-86
Work will demonstrate considerable competence across the General Criteria. They

must exhibit some essential features addressing the issue directly and relevantly across a
good range of aspects; offer a coherent solution or argument involving (where relevant)
consideration of alternative approaches; be substantiated with accurate use of resources
(including if relevant, primary evidence) and contextualization in debate (if relevant); and be
clearly presented. Nevertheless, additional strengths (for instance, the range of problems
addressed, the sophistication of the arguments or solutions, or the use of first principles)
may compensate for other weaknesses.

80-83
Work will be competent and should manifest the essential features described above,

in that they must offer direct, coherent, substantiated and clear arguments; but they will do
so with less range, depth, precision and perhaps clarity. Again, qualities of a higher order
may compensate for some weaknesses.

77-79
Work will show solid competence in solving problems or providing analysis. But it will

be marred by weakness under one or more criteria: failure to fully solve the problem or
discuss the question directly; some irrelevant use of technologies or citing of information;
factual error, or error in selection of technologies; narrowness in the scope of solution or
range of issues addressed or evidence adduced; shortage of detailed evidence or
engagement with the problem; poor organization or presentation, including incorrect
conformity to convention or written formatting. They may be characterized by
unsubstantiated assertion rather than argument, or by unresolved contradictions in the
argument or solution.

74-76
Work will show evidence of some competence in solving problems or providing

analysis. It will also be clearly marred by weakness in multiple General Criteria, including:
failure to solve the problem or discuss the question directly; irrelevant use of technologies or
citing of information; factual errors or multiple errors in selection of technologies; narrowness
in the scope of solution or range of issues addressed or evidence adduced; shortage of
detailed evidence or engagement with the problem; poor organization or presentation,
including incorrect conformity to convention or written formatting. They may be characterized

26



by unsubstantiated assertion rather than argument, or by unresolved contradictions in the
argument or solution.

70-73
Work will show evidence of competence in solving problems or providing analysis,

but this evidence will be limited. It will be clearly marred by weakness in multiple General
Criteria. It will still make substantive progress in addressing the primary task or question, but
the work will lack a full solution or directly address the task; the work will contain irrelevant
material; the work will show multiple errors of fact or judgment; and the work may fail to
conform to conventions.

67-69
Work will fall down on a number of criteria, but will exhibit some of the qualities

required, such as the ability to grasp the purpose of the assignment, to deploy substantive
information or solutions in an effort to complete the assignment; or to offer some coherent
analysis or work towards the assignment. Such qualities will not be displayed at a high level,
and may be marred by irrelevance, incoherence, error and poor organization and
presentation.

64-66
Work will fall down on multiple General Criteria, but will exhibit some vestiges of the

qualities required, such as the ability to see the point of the question, to deploy information,
or to offer some coherent work. Such qualities will be substantially marred by irrelevance,
incoherence, error and poor organization and presentation.

60-63
Work will display a modicum of knowledge or understanding of some points, but will

display almost none of the higher qualities described in the criteria. They will be marred by
high levels of factual or technology error and irrelevance, generalization or boilerplate code
and lack of information, and poor organization and presentation.

0-60
Work will fail to exhibit any of the required qualities. Candidates who fail to observe

rubrics and rules beyond what the grading schemes allow for may also be failed.

c. Synchronous Meeting Discussions and Viva Voce Examination Template
Synchronous meeting discussions and viva voce examinations are conducted on the

same format: written work is submitted in advance, and a discussion follows. This provides
students an opportunity to clarify and explain their written claims, and it also tests whether
the work is a product of the student’s own research or has been plagiarized.

For the viva voce examination, the submitted work is graded, and the grade is
recorded prior to the oral examination.

The synchronous discussion and viva voce examination acts to shift the recorded
grade on the submitted essay according to the following rubric:

+3
Up to three points are added for excellent performance; the student displays a high

degree of competence across the range of questions, and excels in at least one group of
criteria. Relative weaknesses in some areas may be compensated by conspicuous strengths
in others.

27



+/- 0
The marked script is unchanged for fair performance. Answers to questions must

show evidence of some solid competence in expounding evidence and analysis. But they will
be marred by some weakness under one or more criteria: failure to discuss the question
directly; appeal to irrelevant information; factual error; narrowness in the range of issues
addressed or evidence adduced; shortage of detailed evidence; or poor organization and
presentation, including consistently incorrect grammar. Answers may be characterized by
unsubstantiated assertion rather than argument, or by unresolved contradictions in the
argument.

-3 (up to three points)
Up to three are subtracted points for an inability to answer multiple basic questions

about themes in the written work. Answers to questions will fall down on a number of criteria,
but will exhibit some vestiges of the qualities required, such as the ability to see the point of
the question, to deploy information, or to offer some coherent analysis towards an argument.
Such qualities will not be displayed at a high level or consistently, and will be marred by
irrelevance, incoherence, error and poor organization and presentation.

0
Written work and the oral examination will both be failed if the oral examination

clearly demonstrates that the work was plagiarized. The student is unfamiliar with the
arguments of the essay or the sources used for those arguments.

Curriculum

Android App Development

Course Description
Android App Development teaches students to develop applications for Android, the

most-used mobile platform in the world. Students learn to build with Android Studio and
Kotlin, the modern toolkit used for professional Android development. The course prepares
students to become professional Android developers.

The course begins with the fundamentals of Kotlin, the official language for Android
development. Students learn its basic syntax, as well its object-oriented programming
principles and key language features such as classes, collections, higher-order functions,
and extensions. Students then delve into building Android apps, first by exploring layout and
how to use common UI components. They learn Activity Lifecycle, and how to monitor and
handle app states as users navigate through an app. Students learn how to create dynamic
applications that persist data, and how to use APIs to pass data. The second part of the

28



course covers advanced functionality including animations, notifications, offline caching, and
authentication and with Firebase.

Students learn by building small programming projects. The course culminates in a
final group project where students build an Android app of their choice from scratch, going
from initial design to deployment in the Play Store. Students will have obtained enough
knowledge and have the option to obtain the Associate Android Developer certification
offered by Google.

Applied Computer Science

Course Description
This capstone course enables students to demonstrate their proficiency in the

technical and human skills that they have acquired throughout their undergraduate studies.
The capstone requires students to conceptualize, plan, and implement a software project to
completion, and evaluate their project’s processes and outcomes.

The capstone builds on the initial project scoping work that was carried out in
Capstone Research Methods, which culminated in students submitting a project proposal,
and gaining formal approval for their capstone Project Proposal.

In this course, students will implement their proposed project with the support of a
supervisor. Students with a common supervisor will be put into capstone advisory peer
groups and will be required to meet with their group and supervisor regularly to update each
other on their capstone progress and to provide feedback. Students will also have regular
meetings with their capstone supervisor to provide additional support and guidance
throughout the course.

Upon completion of their capstone projects, all students will be required to participate
in a capstone symposium at the end of the term, where they will present their working
projects/prototypes to internal and external stakeholders.

Artificial Intelligence

Course Description
Artificial Intelligence (AI) aims to teach students the techniques for building computer

systems that exhibit intelligent behavior. AI is one of the most consequential applications of
computer science, and is helping to solve complex real-world problems, from self-driving
cars to facial recognition. This course will teach students the theory and techniques of AI, so
that they understand how AI methods work under a variety of conditions.

The course begins with an exploration of the historical development of AI, and helps
students understand the key problems that are studied and the key ideas that have emerged
from research. Then, students learn a set of methods that cover: problem solving, search

29



algorithms, knowledge representation and reasoning, natural language understanding, and
computer vision. Throughout the course, as they apply technical methods, students will also
examine pressing ethical concerns that are resulting from AI, including privacy and
surveillance, transparency, bias, and more.

Course assignments will consist of short programming exercises and
discussion-oriented readings. The course culminates in a final group project and
accompanying paper that allows students to apply concepts to a problem of personal
interest.

Back End Development

Course Description
Back End Development builds on previous knowledge of web development and

security, and equips students with knowledge of server-side development so that they can
become professional back-end developers and build enterprise-scale applications. Students
learn to develop and deploy server-side applications with greater scope and complexity.

In this project-based course, students deepen their understanding by building the
back end for a cross-platform application. The project will require implementing advanced
features that add complexity and uniqueness to a server’s structure. Examples of these
include payment gateways, chat rooms, full text search, WebSockets, etc. Students will
design and build out all of the API endpoints needed for the application and properly secure
them for use in any web or mobile front-end application. In doing so, they will explore the
differences and tradeoffs between web services, APIs, and microservices. They will learn
best practices for code quality including unit testing and error handling. They will also learn
to efficiently document their APIs.

Students will understand key Developer Operations (DevOps) practices including
environment design, testing, development controls, and uptime management. They will
implement modern DevOps workflows (e.g., containers, cloud virtual machines), and learn
tradeoffs between different approaches. They will set up continuous integration and
continuous delivery, and explore various strategies for automated testing and application
monitoring.

Capstone Research Methods

Course Description
The Capstone Research Methods course supports students in developing critical

research skills that are needed for the successful completion of their capstone project
(Applied Computer Science).

30



The course provides students with an overview of the research process and types of
capstone projects that they can undertake, and includes a detailed exploration of relevant
quantitative and qualitative research methods.

Students will develop skills in data gathering and analysis, researching and writing an
effective literature review, creating a research proposal, and managing ethical considerations
with regards intellectual property rights and research with human subjects.

At the conclusion of the course, students will be required to submit their formal
capstone project proposal which should include details of their project scope, research
question, hypothesis, and project plan. Their proposal must receive a passing mark before
they are allowed to undertake the capstone course in the final term of the degree program.

Challenge Studio 1

Course Description
Engineering for Development, Challenge Studio 1, and Challenge Studio 2 are 3

courses that help students investigate the role that technology can play in solving some of
the world’s most intractable social and economic development challenges.

In Challenge Studio 1, students will work in groups to design, develop, and test a
solution to a development challenge of their choice. The focus of this course is to provide
students with the tools and skills to create meaningful technology solutions (e.g. services,
products) to a sustainable development problem. This course builds on the problem
identification and analysis skills that were developed in Engineering for Impact, the product
management skills that were developed in Product Management and Design, and the ethical
engineering skills developed in Ethics in Tech.

At the end of Challenge Studio 1 students will submit a Minimum Viable Product
(MVP) that is ready to go to market as their final project deliverable.

The course will utilize virtual studio time, where groups work together on the key
incremental tasks that are required to allow them to successfully create their final project
output. Studio time will be supported by lectures, seminars, and learning resources on useful
skills such as human centered design, end user identification, requirements gathering, value
creation, impact measurement, and creative thinking and innovation.

Challenge Studio 2

Course Description
Engineering for Development, Challenge Studio 1, and Challenge Studio 2 are 3

courses that help students investigate the role that technology can play in solving some of
the world’s most intractable social and economic development challenges.

31



Challenge Studio 2 builds on the final output from Challenge Studio 1, and supports
students in creating a sustainable business model for the MVP that they developed in the
previous course. This course is focused on putting the MVPs in the hands of real users,
getting their feedback, and iterating and refining the product or service, while also
developing a viable business model.

The course will utilize virtual studio time, where groups are able to work
collaboratively on their MVPs, with the support of additional lectures, seminars, and learning
resources on important topics such as product launch planning, user evaluation tools and
frameworks, business canvas development, funding models, financial modeling and strategy,
and pitching.

The course will culminate in a pitch showcase, where students are required to
present their work to relevant stakeholders (e.g. industry leaders).

Collaborating for Impact

Course Description
Collaborating for Impact aims to support students in developing effective

collaboration skills in the pursuit of collective impact and success. Few problems are solved
by individuals working alone, therefore the ability to work effectively with others to achieve a
common goal is a crucial professional skill.

The course will start by focusing on the social awareness and relationship
management components of Emotional intelligence, which were briefly introduced in the
pre-requisite course, Optimizing Your Learning. Students will then be introduced to a variety
of collaboration and leadership theories and frameworks, and they will examine theories of
team dynamics and dysfunction, and reflect on how these relate to their past experiences of
collaboration in academic and personal settings.

The second part of this course will require students to put their communication and
collaboration skills to practice by completing a group project that is designed to test their
ability to work effectively as a group and deliver a high-quality output under time, resource,
and information constraints.

Communicating for Success

Course Description
Communicating for Success supports students in developing communication skills

that are essential for success in their personal and professional lives. The course will focus
on close reading, written communication, verbal communication, and non-verbal
communication skills. An emphasis will be placed on weekly submissions, and peer and
instructor feedback, to allow students to practice and improve their skills.

32



Students will learn how to effectively read and analyze texts as a precursor to
developing their own written communication skills. They will then practice crafting clear
communications by learning about topics such as writing structure and organization,
grammar, audience awareness, and the iterative writing process. Next, students move on to
verbal communication, and will learn how to confidently and skillfully deliver effective oral
presentations. Finally, students will learn about the impact of non-verbal communication on
how their messages are received.

The course will culminate in a project that will require students to develop and
implement a strategy for communicating a technical topic to a non-technical audience.

Computer Systems

Course Description
This course explores computing beyond software. Students will go a level deeper to

better understand the hardware and see how computers are built and programmed. It is
modeled on the popular, project based “Nand to Tetris” textbook, which walks learners
through building a computer from scratch. It aims to help students become better
programmers by teaching the concepts underlying all computer systems. The course
integrates many of the topics covered in other computer science courses, including
algorithms, computer architecture, operating systems, and software engineering.

Students will learn how to build a computer system using progressive steps. The
course starts with a brief review of Boolean algebra, and an introduction to logic gates.
Students design a set of elementary logic gates using a Hardware Description Language.
They then build chips to perform arithmetic and logical operations and build the computer’s
main memory unit. Subsequently, students learn to write low-level machine language, and
build a CPU to create a fully functional computer system. Finally, students implement a
virtual machine, compiler, and basic operating system. Projects are spread out evenly
throughout the course, and are completed in pairs.

By the end of the course, students will develop a strong understanding of the
relationships between the architecture of computers, and software that runs on them.

Data Structures and Algorithms 1

Course Description
This course teaches the fundamentals of data structures and introduces students to

the implementation and analysis of algorithms, a critical and highly valued skill for
professionals.

Students start by examining the basic linear data structures: linked lists, arrays,
stacks, and queues. They learn how to build these structures from scratch, represent
algorithms using pseudocode, and translate these into running programs. They apply these

33



algorithms to real-life applications to understand how to make complexity and performance
tradeoffs. Students will also learn how to develop algorithms for sorting and searching, use
iteration and recursion for repetition, and make tradeoffs between the approaches. They will
learn to estimate the efficiency of algorithms, and practice writing and refining algorithms in
Python.

This course emphasizes big-picture understanding and practical problem-solving in
preparation for technical interviews and professional practice. Throughout the course,
students will solve common practice problems, and participate in mock interview sessions.
As part of their regular assignments, they will also deepen their understanding of these
topics and practice technical communication by writing technical blog posts.

Data Structures and Algorithms 2

Course Description
This course builds on Data Structures & Algorithms 1. Students will explore

non-linear data structures, and implement and analyze advanced algorithms.

The course begins with a brief review of basic data structures and algorithms.
Students deepen their understanding of searching and sorting, with a focus on describing
performance. They learn about advanced data structures including priority queues, hash
tables and binary search trees. Students build on their knowledge of graph theory to
implement graph algorithms, and explore topics like finding the shortest paths in graphs, and
applications of algorithms in maps, social networks, and a host of real-life applications. Other
key topics include: divide and conquer recursion, greedy algorithms, dynamic programming
algorithms, NP completeness, and case studies in algorithm design.

The course emphasizes big-picture understanding and practical problem-solving in
preparation for technical interviews and professional practice. Students will solve common
algorithmic problems and participate in mock interview sessions. As part of their regular
assignments, they will write technical blog posts to deepen their understanding of these
topics and to practice technical communication.

Designing Your Future

Course Description
Designing Your Future is inspired by the Stanford University course Designing Your

Life. In this course, final year students will use design thinking to reflect on their
undergraduate studies, and to plan and prepare for their transition into full-time employment

The course begins by exploring some of the self-awareness topics (e.g. identity,
self-image, mental models, and motivation) that were introduced during the Optimizing Your
Learning course. Students will revisit artifacts that they created during that course and reflect
on their personal and technical growth over the course of the degree program. This will allow

34



them to craft a compelling personal and professional narrative so that they can position
themselves effectively in the job market. Students will also learn how to use a design
thinking approach to explore options for their careers after graduation.

In the second half of the course, students will develop practical skills to support their
transition into full-time employment. They will learn critical skills like networking,
professionalism, virtual collaboration, etc. that will support them in their integration into the
workplace, while also developing some practical life skills, such as financial planning and
emotional wellbeing.

Discrete Math

Course Description
This course builds on Mathematical Thinking and provides the mathematical

foundation needed for many fields of computer science, including data science, machine
learning, and software engineering.

It focuses on core mathematical areas that are essential in the toolkit of every
computer scientist: logic, combinatorics and probability, set theory, graph theory, and
elementary number theory. Each topic is covered with a focus on applications in modern
computer science. It begins with a unit on logic which builds on previous knowledge, with an
emphasis on writing readable and precise code. Probability and combinatorics focuses on
analysis of algorithms and reliability. There is an in-depth focus on graph theory, and
students explore the numerous applications of graph theory in computer science (data
mining, clustering, networking, etc.). Finally, the course introduces number theory, beginning
with fundamental results such as the Euclidean Algorithm then applications in cryptography.

The course culminates in a final group project where students explore original
mathematical sources, and describe the historical proof techniques of a discrete math topic.

Engineering for Development

Course Description
Engineering for Development, Challenge Studio 1, and Challenge Studio 2 are

courses that help students investigate the role that technology can play in solving some of
the world’s most intractable social and economic development challenges.

In Engineering for Development, students will learn how to analyze the root causes of
development challenges so that they are able to build effective technology solutions. The
course aims to introduce students to selected global development challenges using the
United Nations Sustainable Development Goals (SDGs) as the framework for selecting the
areas of focus.

35



Each term, the course will focus on 1- 2 subject areas (e.g. Quality Education,
Affordable and Clean Energy, Climate Action), which will serve as test cases for students to
develop the skills required to effectively analyze and understand complex development
issues. Students will examine the system level dynamics that are at the root of these
challenges, and will also analyze and critique technology related solutions that have been
developed to address these challenges.

Ethics for Tech

Course Description
This course examines the ethical questions that are emerging as a result of rapid

technological change. It prepares students to become responsible technologists, and
provides a basis for ethical decision-making in their professional work.

It focuses on the promise and potential ethical dilemmas that result from the latest
developments of computer science. Topics addressed include ethical decision-making,
privacy and confidentiality, safety, manipulation/deception, and the impact of computers on
society.

Students are first introduced to a selection of classical ethical theories (e.g., Rights,
Justice/Fairness, Utilitarian, etc.). These provide a vocabulary and framework for examining
ethical issues in tech. These frameworks are applied to a selection of relevant ethical
questions. Examples might include: should social media companies suppress the spread of
fake news on their platforms? Is electronic privacy a right? Are there justifiable uses of state
surveillance? Should AI be used to “predict” crime by police? What ethical codes should
guide AI like self-driving cars? Students read case-studies addressing these questions, write
positioning papers, and offer feedback on papers of their classmates. Each live class is a
seminar, where students engage in facilitated discussion.

The class culminates in an ethical redesign project where students analyze an
existing product that poses ethical questions, then propose specific changes (in software,
hardware, UI design, processes, features, implementation) to reduce ethical risks posed by
the product.

Front End Web Development

Course Description
Front End Web Development builds on previous knowledge of web development, and

extends students’ familiarity with modern HTML, CSS, JavaScript, and Web APIs. Students
learn to develop and deploy client-side web applications with greater scope and complexity.
Complex frontend features require using HTML, CSS, and JavaScript together. Students will
usually have taken Web Application Development (or similar course under advisement from
their faculty) as a prerequisite for this course.

36



Students deepen their knowledge of the JavaScript language, covering in depth
topics like scope and higher order functions. Students practice using modern build tools for
package management, bundling, optimization, formatting and linting, and testing.

Throughout the course, students will solve practice exercises and build projects,
culminating in a final project using a JavaScript framework to build a complex web
application.

Students will continue to apply technical communication skills by writing technical
specs, drafting architecture diagrams, and documenting APIs. They will extend their
communication practice through technical blogging on topics like tool comparisons,
architecture choices, benchmarks, and frontend web design. Students will grow in
independence by reading documentation to learn about novel language and browser
features.

Industry Experience 1

Course Description
Industry Experience is a form of experiential learning that enables students to apply

their academic knowledge in a professional context. Students work to build software that
meets the needs of a professional organization by completing either (1) an approved
internship, or (2) a product studio.

During the internship, students work on tasks that meet the needs of the
organization, guided by an on-site supervisor. Internships must entail significant, substantial
computer science. In the studio, external clients (e.g., businesses, non-profits) sponsor a
software development project completed by students. A typical end result is a prototype of or
a fully functional software system ready for use by the clients. These projects are completed
by teams of 4-6 students, who meet with the client weekly to share progress and get
feedback.

Students complete online courses under the supervision of a faculty advisor.
Pre-work includes instruction in communication, goal-setting, and professional development.
During the industry experience, students submit bi-weekly written reflections on their
personal goals, challenges, and, for the studio, team feedback. At the end of the term,
students obtain written feedback from their organization supervisor. They also submit a final
report which describes the problem statement, approaches/methods used, deliverables, and
skills gained. Industry Experience culminates in a final presentation which is shared as a
public blog post.

Industry Experience 2

Course Description
Industry Experience 2 provides a form of experiential learning that enables students

to apply their academic knowledge in a professional context. Students work to build software

37



that meets the needs of a professional organization by completing either (1) an approved
internship, or (2) a product studio.

During the internship, students work on tasks that meet the needs of the
organization, guided by an on-site supervisor. Internships must entail significant, substantial
computer science. In the studio, external clients (e.g., businesses, non-profits) sponsor a
software development project completed by students. A typical end result is a prototype of or
a fully functional software system ready for an end user. These projects are completed by
teams of 4-6 students, who meet with the clients or other end users weekly to share
progress and get feedback.

Students complete online courses under the supervision of a faculty advisor.
Pre-work includes instruction in communication, goal-setting, and professional development.
During the industry experience, students submit bi-weekly written reflections on their
personal goals, challenges, and, for the studio, team feedback. At the end of the term,
students obtain written feedback from their organization supervisor. They also submit a final
report which describes the problem statement, approaches/methods used, deliverables, and
skills gained. Industry Experience culminates in a final presentation which is shared as a
public blog post.

Interaction Design

Course Description
This course introduces students to the principles of human-computer interaction

(HCI). Students explore how humans process information (perception, memory, attention) in
the context of designing and evaluating interfaces. This course complements programming
coursework by helping students understand how to design more usable systems.

The course builds on previous knowledge of design thinking and expects students to
apply the design thinking methodology as a starting point. The first part of the course
focuses on designing for multiple platforms. Students create designs that solve a problem on
multiple devices (e.g., web, mobile, wearables) and learn how to create a coherent design
system as users move between devices. The second part of the course delves into design
beyond visual user interfaces, and teaches students how to design for emerging
technologies, for example, sensors, controls and ubiquitous computing. Throughout the
course, students learn and apply a variety of evaluation methodologies used to measure the
usability of design.

This is a project-based course and, in each part, students will work in a team to
design, prototype and test a solution to a problem. Students will present their designs in
class sessions, and practice giving and receiving meaningful critiques.

Introduction to Data Science

38



Course Description
Data science is applicable to a myriad of professions, and analyzing large amounts of

data is a common application of computer science. This course empowers students to
analyze data, and produce data-driven insights. It covers all areas needed to solve problems
involving data, including preparation (collection and integration), presentation (information
visualization), analysis (machine learning), and products (applications).

This course is a hybrid of a computing course focused on Python programming and
algorithms, and a statistics course focusing on estimation and inference. It begins with
acquiring and cleaning data from various sources including the web, APIs, and databases.
Students then learn techniques for summarizing and exploring data with spreadsheets, SQL,
R, and Python. They also learn to create data visualizations, and practice communication
and storytelling with data. Finally, students are introduced to machine learning techniques of
prediction and classification, which will prepare them for advanced study of data science.

Throughout the course, students will work with real datasets (e.g., economic data)
and attempt to answer questions relevant to their lives. They will also probe the ethical
questions surrounding privacy, data sharing, and algorithmic decision making. The course
culminates in a project where students build and share a data application to answer a
real-world question.

Introduction to Programming in Python

Course Description
This course is intended for students with little or no programming experience. It aims

to help students develop an appreciation for programming as a problem solving tool and to
provide a foundation in Python programming. Students will learn how to think algorithmically,
solve problems efficiently, and prepare for further computer science studies.

The course begins with an introduction to programming constructs in a simplified
visual environment. Students will learn to specify commands, and to construct complex
programs from simple instructions. The next part of the course introduces a formal
programming environment, and students learn the basic syntax and structures of Python.
Topics covered include variables, expressions, conditional execution, functions, loops, and
iterations. Throughout the course, students will be exposed to abstraction and will learn a
systematic way of constructing solutions to problems. They will work on team projects to
practice pair programming, code reviews, and other collaboration methods common to
industry.

The course culminates in a final group project and presentation during which
students demonstrate and reflect on their learning.

iOS App Development

39



Course Description
iOS App Development teaches students to build modern mobile applications using

Apple’s iOS development platform and tool chain. It prepares students to become
professional iOS developers. Students learn the core principles of the Swift programming
language and Apple’s front-end frameworks for creating single and multi-page applications.

The course begins with an introduction to the Swift programming language and
Xcode, Apple’s development environment for iOS. Students learn the core object-oriented
programming principles of Swift, its Model/View/Controller paradigm, and its supporting
classes. They then learn to create user interfaces with UIKit, Apple’s front-end framework.

The second part of the course teaches students to create dynamic iOS applications
that pass information between views and objects, and respond to user events. Students
learn how to incorporate networking into their mobile apps, and how to get and parse
information from the internet through APIs. They also learn techniques for creating
asynchronous apps, including industry-standard patterns and frameworks to persist data
locally and synchronizing data between the local device and the cloud.

Students learn by building small programming projects. The course culminates in a
final group project where students build an iOS app of their choice from scratch, going from
initial design to deployment in TestFlight.

Machine Learning

Course Description
This course aims to teach students the theoretical and practical methods for solving

problems using machine learning. Machine learning is one of the fastest-growing areas of
computer science. Its applications are reshaping society, from consumer products (e.g.,
voice assistants and recommendations) to life-sciences (e.g., personalized medicine and
tumor detection). This course will build on the Data Science introductory course, and help
students understand how, why and when machine learning methods work.

Students will be introduced to major paradigms in machine learning, and gain
working knowledge of supervised and unsupervised learning techniques. Students will learn
to solve common problems such as regression, classification, clustering, matrix completion
and pattern recognition. They will learn how to train and optimize neural networks. They will
explore modern software libraries that enable programmers to develop machine learning
systems. Students will use these libraries along with publicly available data sets to build
models, then learn how to evaluate and verify the results. Throughout the course, as they
apply technical methods, students will also examine the societal context of machine learning
and considerations of transparency, bias and privacy.

Course assignments will consist of short programming exercises and peer
discussions of ethical considerations. The course culminates in a final group project and
accompanying paper that allows students to apply concepts to a problem of personal
interest.

40



Mathematical Thinking

Course Description
This course helps students develop the ability to think logically and mathematically. It

prepares students for more advanced courses in algorithms and discrete mathematics. An
emphasis is placed on the ability to reason logically, and effectively communicate
mathematical arguments.

The course begins with a brief review of number systems, and their relevance to
digital computers. Students review the algebraic operations necessary to perform
programming functions. In the unit on logic and proofs, students learn to identify, evaluate,
and make convincing mathematical arguments. They are introduced to formal logic, and
methods for determining the validity of an argument (truth tables, proofs, Venn Diagrams).
Students learn to decompose problems using recursion and induction, and how these
methods are used in real-world computational problems. The final unit is an introduction to
counting and probability. Topics covered include principles of counting, permutations,
combinations, random variables, and probability theory.

Throughout the course, students apply their knowledge by solving logic puzzles and
creating programs in Python.

Network and Computer Security

Course Description
Network and Computer Security teaches students the principles and practices of

security for software, systems, and networks. It aims to make students critical examiners and
designers of secure systems. Students will learn the mathematical and theoretical
underpinning of security systems, as well as practical skills to help them build, use, and
manage secure systems.

The first part of the course is focused on applied cryptography. Students learn
general cryptographic protocols and investigate real-world algorithms. The second part of
the course covers software and system security, including access controls, trends in
malicious code, and how to detect system vulnerabilities. There is a special focus on web
security, and modern practices for building secure web architectures. The final section of the
course focuses on network security and covers concepts of networking, threats, and
intrusion protection.

Course projects will require students to think both as an attacker and as a defender,
and write programs that examine security design. Students will also examine recent security
and privacy breaches. Working in pairs, they’ll conduct an in-depth investigation, and give a
presentation to help classmates understand its technical underpinnings and social
implications.

41



Optimizing Your Learning

Course Description
Optimizing Your Learning aims to transform incoming first year students into effective

and empowered self-directed learners.

In the modern world, long-term academic, professional, and personal success is
driven by the ability of individuals to take control of their learning. Therefore, this course
helps students to develop the knowledge, skills, and mindsets necessary to take ownership
of their learning and build their self-efficacy.

During the course, students will develop competence in skills that are most critical for
effective self-directed and self-regulated learning (i.e. self-management, self-monitoring, and
self-modification), while also learning how to use learning strategies to maximize their overall
learning efficiency and efficacy. They will also utilize the Emotional Intelligence framework to
explore their identity, self-image, motivation, and self-regulation skills, to support their
development as self-directed learners.

The course culminates in the creation of a personal learning charter that will help
guide students in their learning throughout their undergraduate studies, which can also be
applied to their learning activities in other realms of their lives.

Product Management and Design

Course Description
This course teaches students to build products users want and love. It gives students

a foundation in the tools and practices of modern product management and interaction
design. Students will work in pairs to apply product development skills to real user
challenges.

The course begins with a focus on user research. Students learn and apply the
design thinking framework to product development. They learn to define user needs through
user interviews and market analysis. They learn to translate user needs into product
specifications, and define metrics to test product success. They learn to create and test
design prototypes (wireframes, user journeys). The second part of the course focuses on
UX/UI design. Students learn key concepts in UI/UX design including information hierarchy,
and typography and color. Students will create high-fidelity UI mockups using
industry-standard tools. They’ll then conduct usability tests to gauge the effectiveness of
their designs.

As students work in pairs, they will practice the complementary and collaborative
roles of PMs and UX designers in early product development. They’ll also practice giving
design critiques to other teams, and responding to feedback on their designs. By the end of

42



the courses, each pair will have a user-tested, refined, and development-ready design for a
web or mobile application.

Programming 1

Course Description
The course helps students develop an appreciation for programming as a

problem-solving tool. It teaches students how to think algorithmically and solve problems
efficiently, and serves as the foundation for further computer science studies.

Using a project-based approach, students will learn to manipulate variables,
expressions, and statements in Python, and understand functions, loops, and iterations.
Students will then dive deep into data structures such as strings, files, lists, dictionaries,
tuples, etc. to write complex programs. Over the course of the term, students will learn and
apply basic data structures and algorithmic thinking. Finally, the course will explore design
and implementation of web apps in Python using the Flask framework.

Throughout the course, students will be exposed to abstraction and will learn a
systematic way of constructing solutions to problems. They will work on team projects to
practice pair programming, code reviews, and other collaboration methods common to
industry. The course culminates in a final group project and presentation during which
students demonstrate and reflect on their learning.

Programming 2

Course Description
This course expands on Programming 1, and deepens students' knowledge of

Python with a focus on data access and management.

Previously introduced programming topics include data types, operators, variables,
and control flows are reinforced, this time in the context of retrieving and manipulating data.
Students learn to use Regular Expressions, a powerful tool for finding and extracting data
from string and other data types. They are introduced to modern web protocols, and learn
how to retrieve data from web services using Python and JSON, and how to access and
parse data in XML. Students learn the basics of working with databases and the
relationships between databases. They learn how to write queries in SQL, the foremost
programming language for generating, manipulating, and retrieving information from a
relational database.

Students work on small projects throughout the course. The final project challenges
students to retrieve and visualize original data in Python.

43



Programming in Python

Course Description
This course is intended for students who have completed Programming 1. It aims to

help students deepen their programming skills, concentrating on Python. Students will learn
how to think algorithmically and solve problems efficiently.

Students will gain proficiency in specifying commands, and constructing complex
programs from simple instructions. The course uses a formal programming environment, and
students learn the syntax and structures of Python. Topics covered include variables,
expressions, conditional execution, functions, loops, and iterations. Throughout the course,
students will be exposed to abstraction and will gain a systematic way of constructing
solutions to problems. They will work on team projects to practice pair programming, code
reviews, and other collaboration methods common to industry.

The course culminates in a final group project and presentation during which
students demonstrate and reflect on their learning.

Team Software Project

Course Description
In this course, students practice the skills necessary to work effectively on a

professional software product team. By working in small teams to build a web application,
they integrate the technical, communication, and collaboration skills built in previous
courses.

Students build a multi-feature web application, either for a fictional client or an
original idea of their own design. As they work together, they learn modern technical
collaboration tools and practices. Topics covered include using version control for shared
repository management, writing technical design documents, and conducting code reviews.
They also practice project management skills by implementing the SCRUM framework,
including sprint planning, reviews, and retrospectives. During each milestone, team
members rotate taking on various roles including Scrum master, product owner, and
technical lead. Throughout the course, students will also apply and refine the emotional
intelligence, team development, and leadership frameworks previously learned. By the end
of the course, students should understand and value the various roles within a software
product development team, and be able to participate effectively on a product team.

There are no scheduled class sessions. Teams will submit their sprint retrospectives
for feedback from peers and faculty. The course culminates in a showcase where students
present their final project to their peers and external stakeholders.

Web Application Development

44



Course Description
This course builds on Web Foundations, and provides a comprehensive introduction

to client and server-side development for the web.

In this project-based course, students will work independently to build a web
application, and progressively apply new knowledge to their application. Students deepen
their knowledge of HTML and learn advanced CSS, including how to use CSS variables and
modern frameworks for motion and interaction. They learn about accessible web design, and
how to create websites and apps that work well on mobile devices, and that support use of
assistive technologies like screen readers.

Students will build the front-end of a web application using HTML, CSS and
JavaScript then write a supporting back-end using either a JavaScript or Python framework.
In doing so, they will demonstrate knowledge of the request-response structure, database
management, and JSON-based APIs. Students will also apply technical communication
skills by writing technical specs, drafting architecture diagrams, and documenting APIs.

Web Foundations

Course Description
This course provides a foundation in building for the web. It helps students

understand how the internet works, examines the role of the internet in their lives, and
teaches them the basics of web development. The course prepares students for the
advanced course in Web Application Development.

The course begins with a brief history of the internet and network technologies.
Students will learn about the physical underpinnings of the internet, barriers to connectivity,
and efforts to expand access (e.g., undersea cable projects, satellite projects). They will also
explore the challenges of internet security and privacy. Students will be encouraged to make
these social explorations personal, and investigate the history, barriers, and opportunities for
connectivity in their local regions. The course will also cover the building blocks of web
application development. Students will master HTML, intermediate CSS, and basic concepts
and syntax of JavaScript.

The course culminates in a “Knowledge Share” project during which students create
a website to educate a non-technical audience on a key aspect of the internet or emerging
technology.

45



46


